An Alternative Structure Model for the Polypentapeptide in Elastin

Peter C. Groß^a, Wulff Possart^{b,*}, and Michael Zeppezauer^b

- ^a Fraunhofer-Institute for Manufacturing and Applied Materials Research (IFAM), Wiener Strasse 12, D-28359 Bremen, Germany
- ^b The University of the Saarland, P.O. 151150, D-66041 Saarbrücken, Germany. Fax: #496813024960. E-mail: w.possart@mx.uni-saarland.de
 - * Author for correspondence and reprint requests

Z. Naturforsch. **58c**, 873–878 (2003); received June 2/July 17, 2003

elastin must be considered from a new perspective.

Key words: Peptides, Elastin, β -Spiral

polypeptide molecules from an extended but not regular state below a transition temperature T_t to the β -spiral above T_t . We examined the secondary structure of the linear PPP C(GVGVP)₆ in solution with DSC, CD, UV absorption, FTIR and NMR spectroscopy. The results suggest that the β -spiral is not present in the conformational structure of the PPP molecules. The antiparallel β -sheet is proposed to be the basic regular part of conformation because it agrees with all spectroscopic data. As a consequence, the elasticity of natural

so-called ΔT_1 -mechanism in cross-linked macroscopic polypentapeptide (PPP) films. In the literature, the responsible element of conformation in such polypeptides is described as a β spiral and the ΔT_t effect is explained as a sudden change of macroconformation of single

Polypentapeptides (GVGVP)_n which are designed in analogy to the connective tissue protein elastin are reported to transform various kinds of energy into mechanical work by the